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Chapter 7
Sliding Stability

7-1. Scope

This chapter provides guidance for assessing the sliding
stability of laterally loaded structures founded on rock
masses. Examples of applicable structures include gravity
dams, coffer dams, flood walls, lock walls, and retaining
structures. The chapter is divided into three sections to
include: modes of failure; methods of analyses; and treat-
ment methods.

Section I
Modes of Failure

7-2. General

Paths along which sliding can occur will be confined to
the foundation strata; pass through both the foundation
strata and the structure; or just pass through the structure.
This chapter addresses sliding where the failure path is
confined to the foundation strata or at the interface
between the strata and the structure’s foundation.
Although complex, foundation-structure sliding failure or
sliding failure through the structure are conceptually pos-
sible and must be checked, such failures are likely to
occur only in earth structures (e.g., embankments). The
analyses of these later two failure modes are addressed in
EM 1110-2-1902.

7-3. Potential Failure Paths

Potential failure paths along which sliding may occur can
be divided into five general categories as illustrated in
Figure 7-1.

a. Failure along discontinuities. Figure 7-1a illus-
trates a mode of potential failure where the failure path
occurs along an unfavorably oriented discontinuity. The
mode of failure is kinematically possible in cases where
one or more predominate joint sets strike roughly parallel
to the structure and dip in the upstream direction. The
case is particularly hazardous with the presence of an
additional joint set striking parallel to the structure and
dipping downstream. In the absence of the additional
joint set, failure is generally initiated by a tensile failure
at the heel of the structure. Where possible the structure
should be aligned in a manner that will minimize the
development of this potential mode of failure.

b. Combined failure. A combined mode of failure is
characterized by situations where the failure path can
occur both along discontinuities and through intact rock as
illustrated in Figure 7-1b. Conceptually, there are any
number of possible joint orientations that might result in a
combined mode of failure. However, the mode of failure
is more likely to occur in geology where the rock is hori-
zontally or near horizontally bedded and the intact rock is
weak.

c. Failure along interface. In cases where structures
are founded on rock masses containing widely spaced
discontinuities, none of which are unfavorably oriented,
the potential failure path is likely to coincide with the
interface between the structure and the foundation strata.
The interface mode of failure is illustrated in Figure 7-1c.

d. Generalized rock mass failure. In the generalized
rock mass mode of failure, the failure path is a localized
zone of fractured and crushed rock rather than well
defined surfaces of discontinuity. As implied in Fig-
ure 7-1d, a generalized rock mass failure is more likely to
occur in highly fractured rock masses.

e. Buckling failure. Figure 7-1e illustrates a con-
ceptual case where failure is initiated by buckling of the
upper layer of rock downstream of the structure. Rock
masses conducive to buckling type failures would contain
thin, horizontally bedded, rock in which the parent rock is
strong and brittle. Although no case histories have been
recorded where buckling contributed to or caused failure,
the potential for a buckling failure should be addressed
where warranted by site conditions.

Section II
Methods of Analysis

7-4. General Approach

The guidance in this chapter is based on conventional
geotechnical principles of limit equilibrium. The basic
principle of this method applies the factor of safety to the
least known conditions affecting sliding stability, this is,
the material shear strength. Mathematically, the basic
principle is expressed as:

(7-1)τ
τf

FS
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Figure 7-1. Potential failure paths
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in which τ is the limiting (applied) shear stress required
for equilibrium and τf is the maximum available shear
strength that can be developed. The ratio of these two
quantities, expressed by Equation 7-2, is called the factor
of safety.

(7-2)FS τf /τ

The maximum available shear strengthτf is defined by the
Mohr-Coulomb failure criterion. Procedures for selecting
the appropriate shear strength parametersc and φ are
discussed in Chapter 4.

7-5. Conditions for Stability

According to this method, the foundation is stable with
respect to sliding when, for any potential slip surface, the
resultant of the applied shear stresses required for equilib-
rium is smaller than the maximum shear strength that can
be developed. A factor of safety approaching unity for
any given potential slip surface implies failure by sliding
is impending. The surface along which sliding has the
greatest probability of occurring is the surface that results
in the smallest factor of safety. This surface is referred to
as the potential critical failure surface.

7-6. Assumptions

As in any mathematical expression which attempts to
model a geologic phenomenon, the limit equilibrium
method requires the imposition of certain simplifying
assumptions. Assumptions invariably translate into limita-
tions in application. Limit equilibrium methods will
provide an adequate assessment of sliding stability pro-
vided that sound engineering judgment is exercised. This
judgment requires a fundamental appreciation of the
assumptions involved and the resulting limitations
imposed. The following discussion emphasizes the more
important assumptions and limitations.

a. Failure criterion. Conventional limit equilibrium
solutions for assessing sliding stability incorporate the
linear Mohr-Coulomb failure criterion (see Figure 4-5) for
estimating the maximum available shear strength (τf). It
is generally recognized that failure envelopes for all
modes of rock failure are, as a rule, non-linear. As dis-
cussed in Chapter 4, imposition of a linear criterion for
failure, as applied to rock, requires experience and judg-
ment in selecting appropriate shear strength parameters.

b. Two-dimensional analysis. The method presented
in this chapter is two-dimensional in nature. In most

cases, problems associated with sliding in rock masses
involve the slippage of three-dimensional wedges isolated
by two or more discontinuities and the ground surface. In
such cases, a two-dimensional analysis generally results in
a conservative assessment of sliding stability. It is possi-
ble for a two-dimensional analysis to predict an impend-
ing failure where in reality the assumed failure
mechanism is kinematically impossible.

c. Failure surface. The stability equations are based
on an assumed failure surface consisting of one or more
planes. Multiplane surfaces form a series of wedges
which are assumed to be rigid. The analysis follows the
method of slices approach common to limit equilibrium
generalized slip surfaces used in slope stability analysis
(e.g., see Janbu 1973). Slices are taken at the intersection
of potential failure surface planes. Two restrictions are
imposed by the failure surface assumptions. First, the
potential failure surface underlying the foundation element
is restricted to one plane. Second, planear surfaces are
not conducive to search routines to determine the critical
potential failure surface. As a result, determination of the
critical failure surface may require a large number of trial
solutions; particularly in rock masses with multiple,
closely spaced, joint sets.

d. Force equilibrium. Equations for assessing sta-
bility were developed by resolving applied and available
resisting stresses into forces. The following assumptions
are made with respect to forces.

(1) Only force equilibrium is satisfied. Moment
equilibrium is not considered. Stability with respect to
overturning must be determined separately.

(2) In order to simplify the stability equations, forces
acting vertically between wedges are assumed to be zero.
Neglecting these forces generally results in a conservative
assessment of sliding stability.

(3) Because only forces are considered, the effects of
stress concentrations are unknown. Potential problems
associated with stress concentrations must be addressed
separately. The finite element method is ideally suited for
this task.

e. Strain compatibility. Considerations regarding
displacements are excluded from the limit equilibrium
approach. The relative magnitudes of the strain at failure
for different foundation materials may influence the
results of the sliding stability analysis. Such complex
structure-foundation systems may require a more intensive
sliding investigation than a limit equilibrium approach. In
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this respect, the effects of strain compatibility may require
special interpretation of data from in-situ tests, laboratory
tests, and finite element analyses.

f. Factor of safety. Limit equilibrium solutions for
sliding stability assume that the factor of safety of all
wedges are equal.

7-7. Analytical Techniques for Multi-Wedge
Systems

a. General wedge equations. The general wedge
equations are derived from force equilibrium of all
wedges in a system of wedges defined by the geometry of
the structure and potential failure surfaces. Consider the
ith wedge in a system of wedges illustrated in Figure 7-2.
The necessary geometry notation for the ith wedge and
adjacent wedges are as shown (Figure 7-2). The origin of
the coordinate system for the wedge considered is located
in the lower left hand corner of the wedge. Thex and y
axes are horizontal and vertical respectively. Axes which
are tangent (t) and normal (n) to the failure plane are
oriented at an angle (α) with respect to the+x and +y
axes. A positive value ofα is a counterclockwise rota-
tion, a negative value ofα is a clockwise rotation. The
distribution of pressures/stresses with resulting forces is
illustrated in Figure 7-3. Figure 7-4 illustrates the free
body diagram of the resulting forces. Summing the forces
normal and tangent to the potential failure surface and
solving for (Pi-1 - Pi) results in the following equation for
the ith wedge:

(7-3)

(Pi 1 Pi ) ((Wi Vi )cosαi

Ui (HLi HRi)sinαi )
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where

i = subscript notation for the wedge considered

Figure 7-2. Hypothetical i th wedge and adjacent
wedges subject to potential sliding

P = horizontal residual forces acting between
wedges as a result of potential sliding

W = the total weight of wedge to include rock, soil,
concrete and water (do not use submerged
weights)

V = any vertical force applied to the wedge

α = angle of potential failure plane with respect to
the horizontal (-α denotes downslope sliding,
+α denotes upslope sliding)

U = the uplift force exerted on the wedge at the
potential failure surface

H = in general, any horizontal force applied to the
wedge (HL andHR refers to left and right hard
forces as indicated in Figures 7-3 and 7-4)

L = the length of the wedge along the potential
failure surface

FS = the factor of safety
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Figure 7-3. Distribution of pressures, stresses and
resultant forces acting on the hypothetical i th wedge

c = the cohesion shear strength parameter

φ = the angle of internal friction

b. Equilibrium requirements. An inspection of
Equation 7-3 reveals that for a given wedge there will be
two unknowns (i.e., (Pi-1 - Pi) and FS). In a wedge sys-
tem with n number of wedges, Equation 7-3 will provide
n number of equations. BecauseFS is the same for all
wedges there will ben + 1 unknowns withn number of
equations for solution. The solution for the factor of
safety is made possible by a conditional equation estab-
lishing horizontal equilibrium of the wedge system. This
equation states that the sum of the differences in horizon-
tal residual forces (Pi-1 - Pi) acting between wedges must
equal the differences in the horizontal boundary forces.
Since boundary forces are usually equal to zero, the con-
ditional equation is expressed as

(7-4)
i n

i 1

(Pi 1 Pi ) 0

where

Figure 7-4. Free body diagram of the hypothetical i th

wedge

n = the total number of wedges in the system.

c. Alternate equation. An alternate equation for the
implicit solution of the factor of safety for a system ofn
wedges is given below:

(7-5a)FS

i n

i 1

Ci Li cosαi (Wi Vi Ui cosαi ) tanφi

nαi

i n

i 1

[Hi (Wi Vi ) tanαi ]

where

(7-5b)nαi

1
tanφi tanαi

FS

1 tan2αi

All other terms are as defined above. The derivation of
Equations 7-5 follows that of Equations 7-3 and 7-4
except that forces are summed with respect to thex and y
coordinates.
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7-8. Preliminary Procedures

Factor of safety solutions for a multi-wedge system con-
taining a number of potential failure surfaces can result in
a significant book-keeping problem. For this reason, it is
recommended that prior to the analytical solution for the
factor of safety, the following preliminary procedures be
implemented.

a. Define and identify on a scale drawing all poten-
tial failure surfaces based on the stratification, location,
orientation, frequency, and distribution of discontinuities
within the foundation material as well as the geometry,
location, and orientation of the structure.

b. For each potential failure surface, divide the mass
into a number of wedges. A wedge must be created each
time there is a change in slip plane orientation and/or a
change in shear strength properties. However, there can
be only one structural wedge.

c. For each wedge draw a free body diagram which
shows all the applied and resulting forces acting on that
wedge. Include all necessary dimensions on the free body
diagram. Label all forces and dimensions according to
the appropriate parameter notations discussed above.

d. Prepare a table, which lists all parameters, to
include shear strength parameters for each wedge in the
system of wedges defining the potential slip mass.

7-9. Analytical Procedures

While both the general wedge equation and the alternate
equation will result in the same calculated factor of safety
for a given design case, the procedure for calculating that
value is slightly different. Solutions for hypothetical
example problems are provided in EM 1110-2-2200 and
Nicholson (1983a).

a. General wedge method. The solution for the
factor of safety using Equations 7-3 and 7-4 requires a
trial-and-error procedure. A trial value for the factor of
safety,FS, is inserted in Equation 7-3 for each wedge to
obtain values of the differences in horizontal residualP
forces acting between wedges. The differences inP
forces for each wedge are then summed; a negative value
indicates that the trial value ofFS was to high and con-
versely a positive value indicates that the trial value ofFS
was too low. The process is repeated until the trialFS
value results in an equality from Equation 7-4. The value
of FS which results in an equality is the correct value for
the factor of safety. The number of trial-and-error cycles

can be reduced if trial values ofFS are plotted with
respect to the sum of the differences of theP forces (see
examples in EM 1110-2-2200 and Nicholson (1983a)).

b. Alternate methods. Equations 7-5a and 7-5b,
when expanded, can be used to solve for the factor of
safety for a system containing one or more wedges.
Since thenα term, defined by Equation 7-5b, is a function
of FS, the solution forFS requires an iterative process.
An assumed initial value ofFS is inserted into thenα term
for each wedge in the expanded form of Equation 7-5a,
and a new factor of safety is calculated. The calculated
factor of safety is then inserted into thenα term. The
process is repeated until the inserted value ofFS equals
the calculated value ofFS. Convergence to within two
decimal places usually occurs in 3 to 4 iteration cycles.

c. Comparison of methods. The general wedge equa-
tion (Equation 7-3) was formulated in terms of the differ-
ence in horizontal boundary forces to allow the design
engineer to solve directly for forces acting on the struc-
ture for various selected factors of safety. The procedure
has an advantage for new structures in that it allows a
rapid assessment of the horizontal forces necessary for
equilibrium for prescribed factors of safety. The alternate
equation (Equation 7-5a and 7-5b) solves directly forFS.
Its advantage is in the assessment of stability for existing
structures. Both equations are mathematically identical
(Nicholson 1983a).

7-10. Design Considerations

Some special considerations for applying the general
wedge equation to specific site conditions are discussed
below.

a. Active wedge. The interface between the group of
active wedges and the structural wedge is assumed to be a
vertical plane located at the heel of the structural wedge
and extending to the base of the structural wedge. The
magnitudes of the active forces depend on the actual
values of the safety factor, the inclination angles (α) of
the slip path, and the magnitude of the shear strength that
can be developed. The inclination angles, corresponding
to the maximum active residualP forces for each poten-
tial failure surface, can be determined by independently
analyzing the group of active wedges for trial safety fac-
tors. In rock the inclination may be predetermined by
discontinuities in the foundation.

b. Structural wedge. Discontinuities in the slip path
beneath the structural wedge should be modeled by
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assuming an average slip-plane along the base of the
structural wedge.

c. Passive wedge. The interface between the group
of passive wedges and the structural wedge is assumed to
be a vertical plane located at the toe of the structural
wedge and extending to the base of the structural wedge.
The magnitudes of the passive residualP forces depend
on the actual values of the safety factor, the inclination
angles of the slip path, and the magnitude of shear
strength that can be developed. The inclination angles,
corresponding to the minimum passive residualP forces
for each potential failure mechanism, can be estimated by
independently analyzing the group of passive wedges for
trial safety factors. When passive resistance is used spe-
cial considerations must be made. Removal of the pas-
sive wedge by future construction must be prevented.
Rock that may be subjected to high velocity water scour-
ing should not be used unless amply protected. Also, the
compressive strength of the rock layers must be sufficient
to develop the wedge resistance. In some cases wedge
resistance should not be assumed without resorting to
special treatment such as installing rock anchors.

d. Tension cracks. Sliding analyses should consider
the effects of cracks on the active side of the structural
wedge in the foundation material due to differential settle-
ment, shrinkage, or joints in a rock mass. The depth of
cracking in cohesive foundation material can be estimated
in accordance with the following equations.

(7-6a)
dc

2cd

γ
tan











45
φd

2

where

(7-6b)cd

c
FS

(7-6c)φd tan 1







tanφ
FS

The value (dc) in a cohesive foundation cannot exceed the
embedment of the structural wedge. The depth of crack-
ing in massive, strong, rock foundations should be
assumed to extend to the base of the structural wedge.
Shearing resistance along the crack should be ignored and
full hydrostatic pressure should be assumed to extend to
the bottom of the crack. The hydraulic gradient across

the base of the structural wedge should reflect the
presence of a crack at the heel of the structural wedge.

e. Uplift without drains. The effects of seepage
forces should be included in the sliding analysis.
Analyses should be based on conservative estimates of
uplift pressures. Estimates of uplift pressures on the
wedges can be based on the following assumptions:

(1) The uplift pressure acts over the entire area of
the base.

(2) If seepage from headwater to tailwater can occur
across a structure, the pressure head at any point should
reflect the head loss due to water flowing through a
medium. The approximate pressure head at any point can
be determined by the line-of-seepage method. This
method assumes that the head loss is directly proportional
to the length of the seepage path. The seepage path for
the structural wedge extends from the upper surface (or
internal ground-water level) of the uncracked material
adjacent to the heel of the structure, along the embedded
perimeter of the structural wedge, to the upper surface (or
internal ground-water level) adjacentto the toe of the
structure. Referring to Figure 7-5, the seepage distance is
defined by points a, b, c, and d. The pressure head at any
point is equal to the elevation head minus the product of
the hydraulic gradient times the distance along the seep-
age path to the point in question. Estimates of pressure
heads for the active and passive wedges should be consis-
tent with those of the heel and toe of the structural wedge.

(3) For a more detailed discussion of the line-of-
seepage method, refer to EM 1110-2-2502, Retaining and
Flood Walls. For the majority of structural stability com-
putations, the line-of-seepage is considered sufficiently
accurate. However, there may be special situations where
the flow net method is required to evaluate seepage
problems.

f. Uplift with drains. Uplift pressures on the base of
the structural wedge can be reduced by foundation drains.
The pressure heads beneath the structural wedge devel-
oped from the line-of-seepage analysis should be modified
to reflect the effects of the foundation drains. The maxi-
mum pressure head along the line of foundation drains
can be estimated from Equation 7-7:

(7-7)Ux U1 R








L x
L

(U2 U1)
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All parameters are defined in Figure 7-5. The uplift

Figure 7-5. Uplift pressures

pressure across the base of the structural wedge usually
varies from the undrained pressure head at the heel to the
assumed reduced pressure head at the line of drains to the
undrained pressure head at the toe, as shown in Fig-
ure 7-5. Uplift forces used for the sliding analyses should
be selected in consideration of conditions which are
presented in the applicable design memoranda. For a
more detailed discussion of uplift under gravity dams,
refer to EM 1110-2-2200, Gravity Dams.

g. Overturning. As stated previously, requirements
for rotational equilibrium are not directly included in the
general sliding stability equations. For some load cases,
the vertical component of the resultant load will lie out-
side the kern of the base area, and a portion of the struc-
tural wedge will not be in contact with the foundation
material. The sliding analysis should be modified for
these load cases to reflect the following secondary effects
due to coupling of sliding and overturning behavior.

(1) The uplift pressure on the portion of the base
which is not in contact with the foundation material
should be a uniform value which is equal to the maximum
value of the hydraulic pressure across the base (except for
instantaneous loads such as those due to seismic forces).

(2) The cohesive component of the sliding resistance
should only include the portion of the base area which is
in contact with the foundation material.

(3) The resultant of the lateral earth (soil) pressure is
assumed to act at 0.38 of the wall height for horizontal or
downward sloping backfills and at 0.45 of the wall height
for upward sloping backfills.

(4) Cantilever or gravity walls on rock should be
designed for at-rest earth pressures unless the foundation
rock has an unusually low modulus.

7-11. Seismic Sliding Stability

The sliding stability of a structure for an earthquake-
induced base motion should be checked by assuming the
specified horizontal earthquake acceleration coefficient
and the vertical earthquake acceleration coefficient, if
included in the analysis, to act in the most unfavorable
direction. The earthquake-induced forces on the structure
and foundation wedges may then be determined by a
quasi-static rigid body analysis. For the quasi-static rigid
body analysis, the horizontal and vertical forces on the
structure and foundation wedges may be determined by
using the following equations:

(7-8)Hdi MiẌ miẌ Hi

(7-9)Vdi Mig miÿ

where

Hd = horizontal forces acting on the structure and/or
wedge

Vd = vertical forces acting on the structure and or
wedge

M = mass of the structure and/or wedge (weight/g)

m = added mass of reservoir and/or adjacent
soil/rock
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g = acceleration of gravity

Ẍ = horizontal earthquake acceleration coefficient

ÿ = vertical earthquake acceleration coefficient

The subscripti, H, andV terms are as defined previously.

a. Earthquake acceleration. The horizontal earth-
quake acceleration coefficient can be obtained from seis-
mic zone maps (ER 1110-2-1806) or, in the case where a
design earthquake has been specified for the structure, an
acceleration developed from analysis of the design earth-
quake. Guidance is being prepared for the latter type of
analysis and will be issued in the near future; until then,
the seismic coefficient method is the most expedient
method to use. The vertical earthquake acceleration is
normally neglected but can be taken as two-thirds of the
horizontal acceleration if included in the analysis.

b. Added mass. The added mass of the reservoir and
soil can be approximated by Westergaard’s parabola
(EM 1110-2-2200) and the Mononobe-Okabe method
(EM 1110-2-2502), respectively. The structure should be
designed for a simultaneous increase in force on one side
and decrease on the opposite side of the structure when
such can occur.

c. Analytical procedures. The analytical procedures
for the seismic quasi-static analyses follows the proce-
dures outlined in paragraphs 7-9a and 7-9b for the general
wedge and alternate methods, respectively. However, the
Hd and Vd terms are substituted for theH and W terms,
respectively, in Equations 7-3 and 7-5a.

7-12. Factor of Safety

For major concrete structures (dams, lockwalls, basin
walls which retain a dam embankment, etc.) the minimum
required factor of safety for normal static loading condi-
tions is 2.0. The minimum required factor of safety for
seismic loading conditions is 1.3. Retaining walls on rock
require a safety factor of 1.5; refer to EM 1110-2-2502
for a discussion of safety factors for floodwalls. Any
relaxation of these values will be allowed only with the
approval of CECW-E and should be justified by compre-
hensive foundation studies of such nature as to reduce
uncertainties to a minimum.

Section III
Treatment Methods

7-13. General

Frequently a sliding stability assessment of structures
subjected to lateral loading results in an unacceptably low
factor of safety. In such cases, a number of methods are
available for increasing the resistance to sliding. An
increase in sliding resistance may be achieved by one or a
combination of three mechanistic provisions. The three
provisions include: increasing the resisting shear strength
by increasing the stress acting normal to the potential
failure surface; increasing the passive wedge resistance;
and providing lateral restraining forces.

7-14. Increase in Shear Strength

The shear strength available to resist sliding is propor-
tional to the magnitude of the applied stress acting normal
to the potential slip surface. An increase in the normal
stress may be achieved by either increasing the vertical
load applied to the structural wedge and/or passive
wedge(s) or by a reduction in uplift forces. The applied
vertical load can be conveniently increased by increasing
the mass of the structure or placing a berm on the down-
stream passive wedge(s). Installation of foundation drains
and/or relief wells to relieve uplift forces is one of the
most effective methods by which the stability of a gravity
hydraulic structure can be increased.

7-15. Increase in Passive Wedge Resistance

Resistance to sliding is directly influenced by the size of
the passive wedge acting at the toe of the structure. The
passive wedge may be increased by increasing the depth
the structure is embedded in the foundation rock or by
construction of a key. Embedment and keys are also
effective in transferring the shear stress to deeper and
frequently more competent rock.

7-16. Lateral Restraint

Rock anchors inclined in the direction of the applied shear
load provide a force component which acts against the
applied shear load. Guidance for the design of anchor
systems is discussed in Chapter 9 of this manual.
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